锗酸铋电光晶体的半波电压调控

谢 楠1,邱鑫茂2,徐启峰1,谭 巧1,马 靖2

(1. 福州大学 电气工程与自动化学院, 福建 福州 350108;
 2. 福州大学 物理与信息工程学院, 福建 福州 350108)

摘 要:提出了一种通过改变晶体切割方向,调控和提高锗酸铋晶体半波电压的方法,可以显著扩大 光学电压传感器的测量范围。使用电光效应耦合波理论,分析了半波电压对晶体切割方向的依赖关 系。晶体切割方向决定了锗酸铋晶体的通光方向和电场方向。分析结果表明,当晶体沿[-2^{-0.5},2^{-0.5},0] 和 [0.219,0.219,0.951] 方向切割时,可使半波电压提高为标准切割方向的5倍;当晶体沿 [0.140,0.275,0.951]和[2^{-0.5},2^{-0.5},0]方向切割时,半波电压可提高至12倍。讨论了光传播方向对半波 电压的影响,锗酸铋晶体采用标准切割方向,光路角度偏移在±0.05π范围内时,半波电压的变化量小 于 0.06%。该半波电压调控方法同样适用于其它电光晶体。

关键词:半波电压; 锗酸铋; 切割方向; 耦合波理论 中图分类号:TN204 文献标志码:A DOI: 10.3788/IRLA201847.0420003

Regulation of bismuth germanate electro-optic crystal's half-wave voltage

Xie Nan¹, Qiu Xinmao², Xu Qifeng¹, Tan Qiao¹, Ma Jing²

College of Electric Engineering and Automation, Fuzhou University, Fuzhou 350108, China;
 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China)

Abstract: To increase the measurement range of optical voltage sensor, a method for regulating and increasing the half-wave voltage of bismuth germanate crystal by varying the cutting direction was proposed. With the electro-optic wave coupling theory, the dependence of half-wave voltage on crystal cutting direction was investigated. The light propagation direction and the electrical field direction of bismuth germanate crystal were determined by the crystal cutting directions. The results demonstrate that the half-wave voltage is increased to 5 times when crystal is cut along direction $[-2^{-0.5}, 2^{-0.5}, 0]$ and [0.219, 0.219, 0.951]. And the half-wave voltage is increased to 12 times when crystal is cut along direction on half-wave voltage was also discussed. When bismuth germanate crystal is cut along the standard direction, the variation of half wave voltage is less than 0.06% with angle error of light propagation in the range of $\pm 0.05\pi$. This method of half-wave voltage regulation is also suitable for other electro-optic crystals. **Key words:** half-wave voltage; bismuth germanate; cutting direction; wave coupling theory

基金项目:福建省中青年教师教育科研项目(JA15060);福建省科技厅引导性项目(2017H0013)

收稿日期:2017-11-05; 修订日期:2017-12-03

作者简介:谢楠(1985-),男,助理研究员,博士,主要从事线性电光效应和光学电压传感器等方面的研究。Email:xien551@gmail.com 通讯作者:马靖(1977-),女,副教授,博士,主要从事信息光学和激光光谱方面的研究。Email:majing@fzu.edu.cn

0 引 言

基于泡克尔斯效应^[1-4]的光学电压传感器^[5-7]通 常采用锗酸铋(Bi₄Ge₃O₁₂,BGO)晶体^[8-11]作为传感介 质。BGO 晶体是 43 m 对称点群的立方晶体,无自然 线性双折射和圆双折射。BGO 晶体在 350 nm~4 μm 波长范围内透明,温度稳定性佳,无热电效应,容易 获取光学质量优良的大体积晶体^[9]。其半波电压较 高,调制方式通常采用横向调制或纵向调制。

BGO 晶体的半波电压限制了光学电压传感器的 测量范围^[6,12]。为了解决这一问题,通常采用介质分压 方法,即在 BGO 晶体和电极之间附加石英晶体等透 明绝缘介质,减小 BGO 晶体承受的电压^[12-14]。但是额 外介质的引入会增加系统的复杂度,同时改变电场 的分布^[6,13-14]。石英介质和 BGO 晶体的热膨胀系数不 同,由于温度改变产生的热应力会给测量带来随机 误差^[15]。因此迫切需要提出一种新的方法,提高 BGO 晶体的半波电压,增加光学电压传感器测量范围。

文中提出了一种显著增加 BGO 晶体半波电压 的方法,通过选择合适的 BGO 晶体切割方向对半波 电压进行调控。文中采用电光效应耦合波理论[16-19]. 分析了半波电压对晶体切割方向的依赖关系。BGO 晶体电光调制的通光方向和外加电场方向由切割 方向决定。当两个切割面的法向量为[-2-0.5, 2-0.5, 0] 和[0.219,0.219,0.951]时,半波电压可增加为标准 切割方向的5倍。当两个切割面的法向量为 [0.140,0.275,0.951] 和[2-0.5,2-0.5,0]时,半波电压可 增加为标准切割方向的12倍。文中还讨论了光路偏 移对半波电压的影响。切割面的法向量为[-2-05,2-0.5,0] 和 [2-0.5, 2-0.5, 0]时, 光路偏移角度小于 0.05π, 其半 波电压的改变不超过 0.06%。研究结果给 BGO 晶体 半波电压的调控提供了新的思路,可有效增加光学 电压传感器的测量范围。该方法无需引入额外的光 学介质,不会增加光学电压传感器的复杂度。文中提 出的半波电压调控方法具有通用性,同样适用于其 他电光晶体。

1 电光调制的计算方法

1.1 电光效应耦合波理论

耦合波理论四可计算任意光传播方向和任意电

电光晶体中的光传播方向和偏振方向如图 1 所示。波矢量 k = z 轴夹角为 θ ,在 x - y 面内投影与 x 轴的夹角为 φ ,此时两个独立的光电场偏振方向 a 和 b 可分别表示为:

$$a = [\sin\varphi, -\cos\varphi, 0]$$

$$b = [-\cos\theta\cos\varphi, -\cos\theta\sin\varphi, \sin\theta]$$
(1)

图 1 光传播方向和偏振方向示意图

Fig.1 Diagram of light propagation direction and polarization direction

电光效应的耦合方程可以写为:

$$\begin{cases} \frac{dE_{1}(r)}{dr} = -id_{1}E_{2}(r)e^{i\Delta kr} - id_{2}E_{1}(r) \\ \frac{dE_{2}(r)}{dr} = -id_{3}E_{1}(r)e^{-i\Delta kr} - id_{4}E_{2}(r) \end{cases}$$
(2)

式中: $\Delta k = k_2 - k_1, k_1$ 和 k_2 分别对应 E_1 和 E_2 的波矢,参数 $d_i(i=1,2,3,4)$ 表达式为:

$$\begin{cases} d_{1} = \frac{k_{0}}{2n_{1}} r_{\text{eff}} E_{0}, d_{2} = \frac{k_{0}}{2n_{1}} r_{\text{eff}} E_{0} \\ d_{3} = \frac{k_{0}}{2n_{2}} r_{\text{eff}} E_{0}, d_{4} = \frac{k_{0}}{2n_{2}} r_{\text{eff}} E_{0} \end{cases}$$
(3)

式中:*n*₁和 *n*₂分别为 *E*₁和 *E*₂对应的折射率,其中 *r*_{eff} (*i*=1,2,3)为有效电光系数,可表示为:

$$\begin{vmatrix} r_{\text{eff1}} = \sum_{j,k,l} (\varepsilon_{jj}\varepsilon_{kk})(a_j\gamma_{jkl}b_kc_l) \\ r_{\text{eff2}} = \sum_{j,k,l} (\varepsilon_{jj}\varepsilon_{kk})(a_j\gamma_{jkl}a_kc_l) \\ r_{\text{eff3}} = \sum_{j,k,l} (\varepsilon_{jj}\varepsilon_{kk})(b_j\gamma_{jkl}b_kc_l) \end{aligned}$$
(4)

式中: a_j, a_k, b_j, b_k 和 $c_l(j, k, l=1, 2, 3)$ 分别为向量 $a \ b$ 、

c的分量; γ_{kl} 为电光张量元; ε_{ij} 和 ε_{kk} 为介电张量对 角元,并且 $\varepsilon_{ij}=n_{ij}^{2}$, $\varepsilon_{kk}=n_{kk}^{2}$ 。令

$$\begin{cases} \gamma = \frac{d_4 - d_2 - \Delta k}{2} \\ \mu = \frac{\sqrt{(\Delta k + d_2 - d_4)^2 + 4d_4 d_3}}{2} \end{cases}$$
(5)

设 $E_1(0)$ 和 $E_2(0)$ 分别为两个独立光电场分量(E_1 和 E_2)的初始值,r为通光长度。通过求解耦合方程可以得到均匀电场调制下出射光的偏振态,用琼斯矩阵表示为:

$$E = \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = A \begin{bmatrix} E_1(0) \\ E_2(0) \end{bmatrix}$$
(6)

其中

 $A = \begin{bmatrix} \cos(\mu r) + i\gamma\sin(\mu r)/\mu & -id_1\sin(\mu r)/\mu \\ -id_3\sin(\mu r)/\mu & \cos(\mu r) - i\gamma\sin(\mu r)/\mu \end{bmatrix} (7)$

1.2 计算模型

图 2 为 BGO 晶体振幅调制模式的计算示意图。 取坐标 xyz 为电光晶体的 3 个主轴方向。s₁、s₂ 和 s₃ 分别为 BGO 晶体切面的法线方向,s₁ 垂直于晶体的 A、B 面,s₂ 垂直于晶体的 C、D 面,s₃ 垂直于 s₁ 和 s₂。 BGO 晶体横向电光调制时在 C、D 面上施加外电场, 光传播方向垂直于晶体的 A、B 面入射。s₁和 s₂ 可由 下式表示:

*s*₁(θ, φ)=[sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)]
 (8)
 *s*₂(μ, v)=[sin(μ)cos(v), sin(μ)sin(v), cos(μ)]
 (9)
 式中: θ, μ 为法线 *s*₁, *s*₂ 与 *z* 方向的夹角,即天顶角;
 φ, v 为 *s*₁, *s*₂ 在 *x*-*y* 面内的投影与 *x* 轴的夹角,即方位角。

Fig.2 Schematic diagram of transverse amplitude modulation with BGO crystal

对 BGO 晶体切割方向s₁、s₂ 与半波电压之间的 关系解释如下:s₁ 代表光传播方向,AB 面的垂直距 离为通光长度 l;s₂ 代表电场方向,CD 面的垂直距离 为电极间距 d_{\circ} 当 $l \ \pi \ d$ 为固定值,半波电压由切割 方向 $s_1 \ \pi \ s_2$ 决定。已知 $s_1 \ \pi \ s_2$ 在晶体坐标系中的球 坐标 $\theta, \varphi, \mu, v,$ 即可求出半波电压的大小。

2 计算与讨论

2.1 半波电压的计算方法

BGO 电光晶体的标准切割方向为: $[1/\sqrt{2}, 1/\sqrt{2}, 0]$, $[-1/\sqrt{2}, 1/\sqrt{2}, 0]$ 和[0, 0, 1]。常温下 当电光调制所用波长 λ 为 1 310 nm 时,电光系数 γ_{41} =1.15 pm/V,折射率 n=2.045^[9],设 BGO 电光晶体 的通光长度 l_0 为 1 cm,电极间距 d 为 1 cm,半波电 压值为:

$$V_{\pi} = \frac{\lambda}{2n^3 \gamma_{41}} \cdot \frac{d}{l_0} = 66.4 \,\mathrm{kV} \tag{10}$$

对于任意切割方向,取起偏器方向为*a*,入射光的 电矢量分量为*E*₁=1,*E*₂=0。检偏器方向为*b*,经过检偏 器后,出射光仅有*E*₂分量,输出光强(透射率)为:

$$I_{\text{out}} = |E_2|^2 \tag{11}$$

晶体快慢轴与 *a* 和 *b* 的夹角为 45°, 电光相位延迟为:

$$\Gamma = \left| \arg \left[\frac{\sqrt{2}}{2} (E_1 + E_2) \right] - \arg \left[\frac{\sqrt{2}}{2} (E_1 - E_2) \right] \right| \quad (12)$$

以图 3 为例,说明半波电压的计算过程。取 $\theta=0.4\pi$ 、 $\varphi=0.75\pi$ 、 $\mu=0.5\pi$ 、 $\nu=0.25\pi$,切割方向 $s_1=[-0.6725, 0.6725, 0.3090]$, $s_2=[1/\sqrt{2}, 1/\sqrt{2}, 0]$ 。根据公式(1)~(9)和(11),计算输出光强(透射率) I_{out} 与横向调制电压 V 的函数关系,如图 3(a)所示。输出光强为极大值时对应的电压为半波电压 69.8 kV,其相位延迟为 π ,如图 3(b)所示。由于相位延迟与外电压为线性关系,有:

$$V_{\pi} = \frac{\pi}{\Gamma_{66.4\,\mathrm{kV}}} \times 66.4\,\mathrm{kV} \tag{13}$$

- 图 3 切割方向 s₁和 s₂的球坐标为 θ=0.4π、φ=0.75π、μ=0.5π、 ν=0.25π 时,(a)输出光强(透射率)与电压的函数关系,
 (b)相位延迟与电压的函数关系
- Fig.3 Spherical coordinates of cut direction s₁ and s₂ are θ=0.4π, φ=0.75π, μ=0.5π, v=0.25π, (a) functional relationship between (light intensity) transmittance and voltage,
 (b) functional relationship between phase retardation and voltage

2.2 晶体切面对半波电压的影响

2.2.1 半波电压随晶体切割方向 s2 的变化关系 s2 方向即横向调制的电场方向,垂直于图 2 中

的 *CD* 面。取*A*、*B* 的法线方向 s_1 为[-1/ $\sqrt{2}$,1/ $\sqrt{2}$,0], 即 θ =0.5 π , φ =0.75 π 。选择 s_2 的方位角 v 为 0.25 π , 天 顶角 μ 为变量,图 4 展示了半波电压随 μ 的变化关 系。半波电压的变化曲线关于 μ =0.5 π 对称。当 μ = 0.5 π , *C*、*D* 面法线方向为[1/ $\sqrt{2}$,1/ $\sqrt{2}$,0],半波 电压为 1×66.4 kV。 μ 在 0.3 π ~0.7 π 范围内变化时, 半波电压的改变量较小。当 μ =0.1 π 或 μ =0.9 π 时,即 s_2 为 [0.219,0.219,±0.951] 时,半波电压可达到 5×66.4 kV。

2.2.2 切割方向 s1 对半波电压的影响

 s_1 垂直于图 2 所示的 AB 面,为入射光的传播方向。令 $\mu=0.5\pi, \varphi=0.25\pi, \mathbb{P} s_2$ 为 $[1/\sqrt{2}, 1/\sqrt{2}, 0]_{\circ}$

 s_1 的球坐标 θ 和 φ 为变量。图 5(a)给出了 θ 在 0.1 π ~ 0.9 π 、 φ 在 0.55 π ~0.95 π 范围内的 BGO 晶体半波电 压分布,电压大小以 66.4 kV 的倍数表示;分布图关 于 θ =0.5 π , φ =0.75 π 对称;在分布图的边缘,半波电 压达到了 12 倍。因此通过改变晶体的切割方向可极 大地拓宽 BGO 的半波电压。

为了进一步讨论半波电压的分布,分析图 5(a) 中的两条线段 *A* 和 *B* 上半波电压随 θ 角的变化,如 图 5(b)所示。水平线 *B* 两端处的半波电压达到3.23× 66.4kV,此时 *A*、*B* 面法线 *s*₁为[-0.219,0.219,±0.951]; 对角线 *A* 的两端的半波电压达到 12×66.4 kV,此时 *s*₁为[0.140,0.275,0.951]和[-0.275,-0.140,-0.951]。

图 5 (a)半波电压大小随切割面 s₁(θ, φ)的变化;(b)线段 A 和 B上的半波电压变化

Fig.5 (a) Half-wave voltage vs $s_1(\theta, \varphi)$; (b) change of half-wave voltage on line A and B

2.3 光传播方向对半波电压的影响

图 6 给出光传播方向的偏移对半波电压的影响。图 6 给出光传播方向的偏移对半波电压的影响。图 6(a)为光路变化示意图, $\alpha \pi \beta$ 为传播方向在水平方向和竖直方向的角度偏移。晶体采用标准切割, 电场方向为 $[1/\sqrt{2}, 1/\sqrt{2}, 0]$, 理想通光方向为 $[-1/\sqrt{2}, 1/\sqrt{2}, 0]$, 其球坐标为 $\theta=0.5\pi, \varphi=0.75\pi$ 。对于立方形晶体, $\alpha \pi \beta$ 的取值范围可以设

为-0.25π~0.25π。l₀为无角度偏移时的通常长度,光 在 BGO 晶体内的传播长度 *l* 可表示如下:

$$l = \sqrt{\sin^2 \alpha + \sin^2 \beta + 1} \times l_0 \tag{14}$$

由于电场方向和电极间距固定,半波电压由通 光长度 l 和光路偏移角度 α 和 β 决定。其中 α 和 β 改变了通光方向与电场方向的夹角,从而影响电光 调制的强度。半波电压的计算过程如下:由 α 和 β 得到通光方向在 BGO 晶体坐标系中的球坐标: θ = α +0.5 π , φ = β +0.75 π 。电场方向为 c=[$1/\sqrt{2}$, $1/\sqrt{2}$,0]。 将上述参数代入公式(1)~(9)、(11)~(13),即可计算出 半波电压。

如图 6(b)所示, α 和 β 在 -0.25π ~ 0.25π 范围 变化,半波电压最大将达到 1.39×66.4 kV。 α 和 β 在 $-0.05\pi \sim 0.05\pi$ 范围内,半波电压的变化小于 0.06%,可以忽略。

图 6 (a)光路变化示意图;(b)半波电压随光路偏移(α和 β)变化 Fig.6 (a) Illustration of change of light propagation direction; (b) change of half-wave voltage when light propagation direction (α and β) is altered

3 结 论

为了提高光学电压传感器的测量范围,实现对 BGO 晶体半波电压的调控,文中基于电光效应耦合 波理论,研究了晶体切割面的法线方向 $s_1(\theta, \varphi)$ 和 $s_2(\mu, \nu)$ 对半波电压的影响。 $s_1 \pi s_2 分别代表了BGO电$ $光晶体的光传播方向和电场方向。<math>s_1 \pi s_2 \beta [-2^{45}, 2^{0.5}, 0]$ 和[0.219,0.219,±0.951]时,可使半波电压提升到标 准切割方向的5倍; $s_1 \pi s_2 \beta [0.140, 0.275, 0.951]$ 和 $[2^{-0.5}, 2^{-0.5}, 0]$ 时可使半波电压拓宽到12倍。文章还 分析了通光方向对半波电压的影响。当 BGO 晶体 为标准切割方向, $s_1 \pi s_2 分别为 [-2^{-0.5}, 2^{-0.5}, 0]$ 和 $[2^{-0.5}, 2^{-0.5}, 0]$ 时,光源入射角在 $-0.05\pi \sim 0.05\pi$ 范围 内,半波电压的变化小于 0.06%。文中对 BGO 半波 电压的分析也适用于其它电光晶体,具有通用性。论 文提出一种通过改变电光晶体切割方向,显著增加 其半波电压的方法。研究成果可应用于新型光学电 压传感器的设计,有效增加其电压测量范围。

参考文献:

- Li Yongqian, Meng Xiangteng, An Qi, et al. Design and implementation of electro-optic modulator adaptive polarization control system [J]. *Infrared and Laser Engineering*, 2015, 44(6): 1854–1858. (in Chinese)
- [2] Xing J, Li Z, Zhou P, et al. Compact silicon-on-insulatorbased 2×2 Mach-Zehnder interferometer electro-optic switch with low crosstalk [J]. *Chinese Optics Letters*, 2015, 13(6): 061301.
- [3] Li Kewu, Wang Zhibin, Zhang Rui, et al. LiNbO₃ transverse electro-optical modulation characteristics for light pass along optical axis [J]. *Optics and Precision Engineering*, 2015, 23 (5): 1227–1232. (in Chinese)
- [4] Li Kewu, Wang Liming, Wang Zhibin, et al. Phasemodulated ellipsometry combined photo-elastic modulation with electro-optic modulation [J]. *Optics and Precision Engineering*, 2016, 24(4): 690–697. (in Chinese)
- [5] Li H, Cui L, Wang X, et al. Analysis and design of loop gains to optimize the dynamic performance of optical voltage sensor based on pockels effect [J]. *Journal of Lightwave Technology*, 2015, 33(14): 3108–3115.
- [6] Wen Haiyan, Lei Linxu, Zhang Chaoyang, et al. Research situation and design of optical voltage transducer based on pockels effect [J]. Smart Grid, 2013, 1(2): 58–64. (in Chinese)
- [7] Li Changsheng, Wang Weiqi. Review of optical voltage sensor based on electroluminescent effect [J]. *Chinese Optics*, 2016, 9(1): 30–40. (in Chinese)
- [8] Xie Kecheng. Analysis of stability for linear electrooptical

红外与激光工程

www.irla.cn

effect of Bi₄Ge₃O₁₂ crystal[J]. *Piezoelectrics & Acoustooptics*, 1990, 12(4): 46–51. (in Chinese)

- [9] Williams P A, Rose A H, Lee L S, et al. Optical, thermooptic, electro-optic, and photoelstic properties of bismuth germinate (Bi₄Ge₃O₁₂) [J]. *Applied Optics*, 1996, 35 (19): 3562–3569.
- [10] Xiang Tian, Jin Xi, Dong Jianing, et al. Design of fluorescence simulator with large dynamic range for scintillation crystal [J]. *Optics and Precision Engineering*, 2014, 22(2): 304–310. (in Chinese)
- [11] Tan Qiao, Xu Qifeng, Xie Nan, et al. Quantitative research on the intrinsic linear birefringence and temperature characteristic of BGO crystal [J]. *Infrared and Laser Engineering*, 2016, 45(6): 247–252. (in Chinese)
- [12] Santos J C, Taplamacioglu M C, Hidaka K. Pockels highvoltage measurement system [J]. *IEEE Transactions on Power Delivery*, 2000, 15(1): 8–12.
- [13] Tan Q, Xu Q F, Chen L Y, et al. A new method to improve internal electric field distributions of pockels OVS
 [J]. *IEEE Sensors Journal*, 2017, 17(13): 4115–4121.

- [14] Huang Yifan, Xu Qifeng, Chen Linyang, et al. Medium enwrapping method for improving internal electric field distribution of OVT [J]. *Infrared and Laser Engineering*, 2017, 46(7): 0722004. (in Chinese)
- [15] Lee K S. New compensation method for bulk optical sensors with multiple birefringences [J]. *Applied Optics*, 1989, 28 (11): 2001–2011.
- [16] She W L, Lee W K. Wave coupling theory of linear electrooptic effect[J]. *Optics Communications*, 2001, 195(1): 303-311.
- [17] Zheng G L, Xu J, Chen L X, et al. A thermal design for the potassium titanyl phosphate electrooptical modulator [J]. *Applied Optics*, 2006, 46(27): 6774–6778.
- [18] Xie N, Xu Q F, Ma J, et al. Thermally insensitive design for the LiNbO₃ electro-optical modulator under dynamic electric field [J]. *Journal of Optics*, 2014, 16(8): 085201.
- [19] Qiu xinmao, Ma Jing, Xie Nan, et al. A method of electrooptic device's simulation and analysis in arbitrary direction and arbitrary electric field [J]. *Acta Optica Sinica*, 2015, 35 (12): 1223001. (in Chinese)